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Abstract-The velocity, temperature, and concentration profiles, the recovery factor, and the heat- 
transfer coeilicient were calculated for the case of the supersonic flow of a dissociating diatomic 
gas (iodine vapor) over a flat pfate without a pressure gradient. ResuIts were obtained for various 
mass-transfer rates. Exact values of the thermodynamic and transport properties were used in order 
to compare the results with estimates based on constant property solutions where the reference 

enthalpy method is used to calculate the state at which the properties were evaluated. 
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mass fraction; 
skin friction coefficient; 
specific heat at constant pressure; 
diffusion coefficient ; 
energy, intermolecular and dimensionless 
characteristic; 
boundary layer stream function; 
number of quantum states per energy 
level; 
heat-transfer coe~cient ; 
enthalpy ; 
equilibrium constant; 
thermal conductivity; 
Boltzmann’s constant; 
Lewis number; 
Mach number; 
molecular weight of species i; 
mass flux; 
Nusselt number; 
Prandtl number; 
pressure; 
heat flux; 
recovery temperature function ; 
gas constant; 
Reynolds number; 
recovery factor; 
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Stanton number; 
temperature, absolute; 
temperature difference ratio ; 
free stream velocity; 
X-direction velocity; 
Y-direction velocity; 
rate of production of a chemical species 
per unit volume; 
co-ordinate paraIle1 to the plate surface 
and the free stream; 
co~ordinate perpendicuIar to the plate 
surface. 
intermo~~cnlar distance; 

Greek symbols 
fatio of specific heats; 
difference between a quantity evaluated 
for species 1 and 2; 
depth of molecular energy well; 
boundary layer co-ordinate; 
characteristic temperature; 
thermal conductivity of non-reactive gas 
mixture; 
absolute viscosity; 
kinetic tiscosity; 
mass density; 
coIIision diameter; 
shear stress; 
dissipation function; 
stream function. 
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Subscripts 
a, free stream condjtion. used in dimen- 

sionless numbers; 
0, stagnation condition for temperature and 

enthalpy ; 
1, monatomic gas property ; 
11, collision parameter for monatomic- 

monatomic collision; 
12, collision parameter for monatomic- 

diatomic collision : 
2, diatomic gas property: 
22, collision parameter for diatomic-dia- 

tomic collision; 
Aw, adiabatic wall condition : 
5 equilibrium property: 
f I * frozen state corresponding to non- 

reactive condition in an equilibrium 
mixture; 

I, enthalpy difference method ; 
i. .i. chemical constituents; 
P. constant pressure ; 
l-9 temperature difference method. 

Superscripts 
- , denotes dimensionless quantity ob- 

tained by dividing the free stream con- 
dition: 

* , reference enthalpy state; 
I 
9 differentiation with respect to 7. 

INTRODUCTION 

THE PROBLEM of determining heat- and mass- 
transfer rates in dissociating gases has received 
considerable attention [I, 2, 31. Much of the 
previous work has been based upon idealized 
models of the physical and chemical structure 
of the gas. The present investigation is con- 
cerned with establishing the extent to which 
these simplifications affect the accuracy of the 
computation of the overall transfer rates in a gas 
composed only of dissociating diatomic mole- 
cules. The present analysis is based on a model 
in which all properties of the gas are allowed to 
vary throughout the boundary layer and are 
computed using the most accurate methods 
presently available for the computation of 
thermodynamic and transport properties. The 
method used to determine the heat- and mass- 
transfer coefficients was to formulate the prob- 
lem in terms of classical boundary layer theory, 

and to use the actual physical properties of 
the gas at each location in the boundary layer 
during the integration procedure. The calcula- 
tions were for the case of local chemical equili- 
brium. 

The study of a compressible boundary Layer 
in a chemically reacting system with simui- 
taneous heat- and mass-transfer is a natural 
continuation of classical boundary-layer theory. 
The development of the theory from the study 
of incompressible, constant property and con- 
stant pressure flows, to studies with all of these 
restrictions removed has resulted in a better 
understanding of the transport processes which 
occur in the boundary layer, and the develop- 
ment of powerful tools for further exploration. 
It is to be expected that when concentration 
gradients exist in the boundary layer, methods of 
solution based on constant values of the thermo- 
dynamic and transport properties of the gas 
will not be as accurate as methods in which 
these properties are permitted to assume their 
actual values. Recentiy Eckert [2] published a 
survey of boundary-layer heat-transfer know- 
ledge, including the effect of mass transfer 
on the heat-transfer coefficient and the effect of 
chemical reactions on heat transfer. It contains 
439 references to pertinent works which have 
appeared since the previous survey of 1956 141. 
Eckert [2] recommends basing heat-transfer 
computations on enthaipy differences rather 
than on temperature differences, and gives 
engineering formulae for the prediction of the 
heat-transfer rate in a dissociating gas based on 
an approximate method for evaluating 
properties. 

Lees [3] has reviewed the progress made on 
the problems associated with the hypersonic 
boundary layer with simultaneous heat and mass 
transfer and with chemical reactions. Calcula- 
tions of the heat-transfer coefficients have been 
made for two cases. In the case of local chemical 
equilibrium (infinitely fast reaction rate) SOILI- 
tions have been obtained with the assumptions 
of either zero mass-transfer rate or of the Lewis 
number equal to unity. In the case of frozen 
chemical composition (zero reaction rate) solu- 
tions have been obtained with the assumptions 
of constant specific heats and of the Prandtl, 
Lewis and Schmidt numbers and the pp product 
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constant, for various values of the mass-transfer 
rate. These summaries, which are based on 
restrictions on the thermodynamic and transport 
properties of the gas mixture have permitted 
engineering estimates of heat transfer under 
varied conditions; however, the influence of 
these parameters away from .their idealized 
values are of concern for the understanding of 
the accuracy of the transfer rates in the hyper- 
sonic boundary layer. 

The present investigation examines the effects 
of mass transfer on a compressible laminar 
boundary layer in the presence of a dissociative 
chemical reaction. The model which was chosen 
was that of laminar supersonic flow over a flat 
plate, in the absence of a pressure gradient. The 
surface is assumed to be porous so that the gas 
can be forced through the wall at an appropriate 
rate. 

Energy may be transferred through the 
boundary layer by either of two methods; by a 
temperature gradient causing a transport of the 
energies of molecular translation, rotation, and 
vibration, and by a concentration gradient 
causing a diffusive mass flux with an associated 
chemical energy transport. The diffusive energy 
flux which results from the mass flux is attributal 
to the difference of the chemical enthalpy 
levels of the counter-diffusing gases. These 
diffusive energy fluxes are independent of any 
thermal diffusion or other associated coupled 
energy and mass flux phenomena, which have 
been omitted from this analysis. 

The problem is to prescribe the flow in terms 
of velocity, temperature, and concentration 
profiles throughout the boundary layer. In 
particular, the problem is to seek the influence of 
the mass-transfer rate on the recovery factor 
and on the heat-transfer coefficient. 

ANALYSIS 

The laminar compressible boundary-layer 
differential equations are : 

Overall Continuity (Conservation of Mass) 

g CPU) + ; (P4 = 0. 

Single Species Continuity (Conservation of the 
ith Chemical Species) 

Motion, x-direction 

Motion, y-direction 

aP 
ay= 0. 

Energy 

The above equations are to be solved for the 
case of an infinitely fast rate of chemical re- 
action; i.e. chemical equilibrium. Because we are 
considering a dissociating gas there are only two 
components, the monatomic and diatomic 
species. One single species continuity equation 
suffices to describe the composition. For this 
reason, the last term in the energy equation (5) 
is the sum of only two terms, and the diffusion 
coefficient D becomes the binary mixture dif- 
fusion coefficient. 

When the above set of simultaneous non- 
linear partial differential equations (l), (2), (3), 
and (5) are solved for the chemical equilibrium 
case, the local chemical composition is deter- 
mined by the temperature and pressure, and is 
independent of the diffusion rates. Therefore, 
we need not consider the single species con- 
tinuity equation, (2), any further. It is to be 
noted that the enthalpy, i, includes both the 
sensible and chemical energies. For a substance 
in local chemical equilibrium the enthalpy is 
uniquely determined. 

It is assumed that boundary-layer approxima- 
tions to the Navier-Stokes equations have a 
solution in which the velocity, temperature and 
concentration profiles at different x locations 
are .of similar form. The physical variables 
are a function of a single similarity variable n. 
When the partial differential equations are 
transformed from the x-y plane to the x-n 
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plane, the variable x, and ail derivatives taken 
with respect to x, vanish. The boundary con- 
ditions must be such that they permit similarity 
solutions. The transformation from the x-_V 
plane to the x-7 plane is as foliows: The boun- 
dary-layer similarity co-ordinate n is defined as: 

A stream function, #, is introduced, which 
identically satisfies the overall continuity equa- 

tion 

$5 
pu E +* 

ilt’ ’ pr’ = i,s. (7a. b) 

The boundary-layer stream function, ,f: is 
introduced : 

where f is assumed to be a function of r) only. The 
physical variables are transformed to a dimen- 
sionless variable by using the ratio of the actual 
variable to the free stream value of the variable. 
The boundary-layer ordinary differential equa- 
tions expressed in boundary-layer co-ordinates 
are : 

Motion, x-direction : 

#-” + (&if”)’ : 0. 

Energy : 

(9) 

The result of the transformation is a set of 
two coupled simultaneous non-linear, ordinary 
differential equations in two unknowns. Since 
the coefficients in these differential equations are 
also functions of the unknown variables, and 
since the equations are non-linear with mixed 
boundary conditions, a numerical integration 
technique was used to find the solutions to the 
differential equations. 

PROPERTIES OF A DILUTE BINARY GAS 

In order to solve the ordinary differential 
equations describing the convection and dif- 
fusion’ of energy and momentum, one must 
calculate the thermodynamic and transport 

properties of the gas in the boundary layer. 
The thermodynamic properties of a dilute gas 
have been extensively studied by the methods of 
statisticai mechanics. The problem of calculating 
the thermodynamic properties involved deter- 
mining the specific heats, over the temperature 
range from absolute zero to the maximum 
temperature encountered. The transport pro- 
perties are more difficult, as the collision dyna- 
mics must be solved for all possible collision 
parameters and the results averaged over the 
velocity distribution. These collision inter- 
actions require knowledge of the interaction 
potential for all possible pairs of molecules. 
Appropriate mixing rules have been developed 
which enable us to compute the transport 
properties of the dilute binary gas. 

The thermodynamic properties of a diiute 
binary gas, such as a mixture of monatomic 
and diatomic iodine, can be obtained from the 
properties of each species by use of the usual 
Gibbs-Dalton relationships. The thermo- 
dynamic properties of the components can be 
summarized by describing their specific heats. 
The monatomic component’s specific heat at 
constant pressure is 5R,/2. If the gas is at a high 
enough pressure so that local chemical equili- 
brium accurately describes the gas, and also at 
high enough temperature so that appreciable 
dissociation occurs, then the diatomic species 
will be at a high enough temperature so that all 
the rotational quantum levels will be fully 
excited. The gas will probably be at a low enough 
temperature such that the vibrational modes of 
internal motion of the diatomic species will still 
require a quantum statistical computation for 
the vibrational contribution to the enthafpy. 
The specific heat at constant pressure of the 
diatomic species is therefore 

The corresponding enthatpies are 5/Z RT fbr 
the monatomic species and 

( ! + 
,2 ee-1 

) R,, 

for the diatomic species. ‘The difference in 
enthalpies of the monatomic and diatomic 
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species at absolute zero must be taken into 
account in order to determine the enthalpy of 
reaction at any temperature. The zero point 
enthalpy difference was taken from the N.B.S. 
Tables [5]. The equilibrium constant, Kpr was 
calculated by equating the free energies of the 
two species. 

Estimation of the transport properties of a 
dissociating gas presents a much more difficult 
problem. The few experimental results which are 
available for the transport properties of binary 
mixtures corroborate the theoretical predictions 
based on the kinetic theory of dilute gases. 
These computational methods require knowledge 
of the interaction potential between all pairs of 
colliding molecules. A two-parameter model 
of the interaction potential is the simplest one 
which can accurately predict the experimental 
observations. One parameter is needed to specify 
the size of the particle, and the other to specify 
the nature of the temperature dependence of the 
macroscopic transport property. A Lennard- 
Jones 6-12 model of the interaction potential is 
as accurate as any other model for the purposes 
of calculating transport properties, and was 
chosen because of the availability of tables of 
collision integrals. 

E(z) = 4c [ii)” - (;)1. (11) 

The first approximation to the perturbation 
solution to the Boltzmann transport equation 
as presented by Hirschfelder, Curtiss and Bird 
[6], was used to calculate the viscosity, thermal 
conductivity and diffusion coefficient. The 
Eucken correction [6] was used to compute the 
thermal conductivity of the diatomic species 
which was used in the computation of the thermal 
conductivity of the gas mixture. 

SELECTION OF IODINE AS THE WORKING 
FLUID 

This analysis is applicable for any diatomic 
gas capable of being dissociated. The selection 
of iodine was based on the possibility of con- 
structing an operating dissociated gas wind 
tunnel. The particular details of this study which 
relate to iodine are the molecular properties of 
the iodine gas. The molecular properties could 

be changed to those of oxygen, nitrogen, 
hydrogen, or any other diatomic gas. These 
properties include : 

(a) otj, the collisioncross section between the 
ith and jth species. There are three cross 
sections in a dissociating diatomic gas, 
%lY %P u22. 

(b) EU, the depth of the energy well which 
occurs during collisions of the ith and jth 
species. There are three energy wells, en, 
El29 E22- 

(c) Ml and IV,, the molecular weights of the 
species. 

Cd) eR, t?,, the characteristic dimensionless 
temperature associated with the rotational 
and vibrational internal degrees of freedom. 

(e) gj, the degeneracy of the electronic ground 
state (and any other electronic state with 
energy low enough so that at the tem- 
peratures in question an appreciable frac- 
tion of the molecules exists in these states). 

Some of these properties, 0~ and gj, affect the 
solution only through their influence on Kp, the 
equilibrium constant. Most of these molecular 
parameters, (a) through (e), are known for the 
other gases which are of interest [8]. Results for 
other gases can be obtained by a straightforward 
application of this method with the appropriate 
molecular parameters. 

Results are given here only for iodine. Ap- 
proximate estimates for other gases could be 
obtained by scaling the temperatures in such a 
manner that the dissociation reaction occurs 
at the appropriate level. Analyses similar to 
this one have been made for the stagnation- 
point heat-transfer rate in the absence of mass 
transfer and with simplified gas properties [9]. 

Re-entry vehicles require accurate knowledge 
of stagnation point heating. The designers of 
such vehicles have not concentrated as much on 
the details of the boundary layer along the 
vehicle. However, the reverse is true for skip- 
glide vehicles and rocket engines; that is, the 
boundary layer must be understood, and con- 
trolled, with great accuracy. It appears feasible 
that experimental studies can be conducted in a 
dissociated gas wind tunnel, at pressures of 
O*l-O*OOl atm and temperatures in the neigh- 
borhood of 1000°K to 1200°K. 
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In principle, one could determine the inter- 

action potential for colliding atoms from the 
description of the atoms based on quantum 
mechanics. However, the state of the art of 
quantum mechanics is such that the mathe- 
matical difficulties associated with even the 
simple hydrogen and helium molecules are 
enormous, so that at present we can use quantum 
mechanics only as a qualitative guide in deter- 
mining cohision details. The gas mixture which 
is being considered is dissociating iodine. The 
outer electrons of the iodine atom are 4dr*, 5~2, 
5p5, which are the same as those of the xenon 
atom with a 5p electron removed. The electron 
bond which holds the iodine molecule together 
is a sharing of a pair of 5p electrons. For every 
collision of a pair of iodine atoms, the unpaired 
p electrons may have either symmetric or 
antisymmetric wave functions, and their electron 
spin vectors will align in either a parallel or an 
anti-parallel configuration. The electrodynamic 
forces between the unpaired p electrons are 
such that the interatomic force is attractive for 
only the symmetric wave functions of the 5p 
electrons with anti-parallel spins. Three out of 
four cohisions will occur in such a manner 
that the two colliding atoms behave in a man- 
ner very similar to that of colliding xenon atoms, 
with one p electron missing, and these cannot 
chemically combine. The remaining quarter of 
the collisions will have the quantum con- 
ditions which permit chemical combination. 
One can represent three quarters of the col- 
lisions between iodine atoms by cohisions 
between xenon atoms with a high degree of 
accuracy. The wave function for the atom-atom 
collisions for which the electron wave function is 
symmetric with anti-parallel electron spins is 
the wave function which describes the motion of 
the iodine atoms within the iodine molecule. 

The collisions dynamics for such an inter- 
action will be different from those of the 
majority of collisions in which the monatomic 
iodine can be well represented by xenon atoms. 
The actual particle trajectories during these 
collisions however have also been approximated 
by the colhsion of xenon atoms for lack of better 
information concerning the actual dynamics. 
In this manner, an approximation was made for 
the monatomic collisions which is adequate for 

three fourths of the atom-atom collisions and all 
of the atom-molecule collisions. This approxi- 
mation is believed to be superior to a hard 
sphere model because even though the un- 
certainty in the size of the atom is the same in the 
present approximation and the hard sphere one, 
the present model predicts a more realistic 
temperature variation of the transport pro- 
perties at elevated temperatures than a hard 
sphere model. 

The numerica vaIues of the depth of the 
energy well, and of the cross sections for 1, and 
Xe (which we are using to approximate I), are 
taken from Hirschfelder’s tabulation [6] 

CT ,* == 4.055, e,,lkR L- 229, 

c*. IL= 4.982, +JkB =: 550. 

The “mixing rules” used in order to obtain the 
Xe-I, collision parameters are those based on 
the physical interpretation of the properties 

THE THERMAL CONDUCTIVITY OF A 
DISSOCIATING GAS IN LOCAL THERMO- 

DYNAMIC EQUILIBRIUM 

in as much as energy is transported by both 
heat conduction and mass diffusion, the energy 
flux is the sum of two terms 

q z _-- #JVT ..- pl)Aiyc, Cl21 

When the gas is in local chemical equilibrium 
the concentration is determined by the pressure 
and temperature. The equilibrium constant, K,, 
relates the pressure and concentration. For a 
dissociating diatomic gas, one obtains: 

(13) 

By differentiation and use of the Van ‘t Hoff and 
perfect gas equation, one obtains for the constant 
pressure case 

p DAP ~(1 -- c2) 
k =: X -I- 

R;T” 
(14) 

where h is the component of the thermal con- 
ductivity relating to the t-ansport of the trans- 
lational, rotational, and vibrational energies of 
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the molecules, and k is the actual thermal 
conductivity. 

SOLUTION OF THE BOUNDARY LAYER 
DIFFERENTIAL EQUATIONS 

In order to determine the heat- and mass- 
transfer rates and the skin-friction coefficient, 
one must obtain the values of the temperature, 
concentration and velocity gradients at the wall. 
The profiles of temperature, concentration and 
velocity are needed in order to obtain various 
integrated thicknesses, besides being useful in 
showing the nature of the effects of physical 
processes. 

The energy transport differential equation 
contains three terms. Two of the three terms are 
linear in the temperature variable, and the third 
is independent of the temperature variable. The 
differential equation could be solved by the 
superposition of two solutions if the properties 
were independent of temperature. The homo- 
geneous solution always represents the solution 
to the heat-transfer problem in the absence of 
dissipation, and the particular solution always 
represents the case of the adiabatic wall, when 
the boundary conditions are chosen appro- 
priately. These two cases can be solved 
separately. 

The dimensionless temperature function for 
the heat-transfer case is 

(15) 

The dimensionless temperature function for 
the case of the adiabatic wall is 

(16) 

with the boundary conditions 0 = 1 and R’ = 0 
at7 =O,andB = R =OatT+ co. 

The two differential equations which were 
solved were : 

“f&B’ + &, (p/w) = 0 (17) 

representing the homogeneous solution, and 

j&R’ + &m #R’) + pp ‘; = 0 (18) 

representing the particular solution. Equations 
(17) and (18) were solved by use of a high-speed 
digital computer. 

Because of lack of time only the two separate 
cases were solved. Since the coefficients in the 
differential equations are combinations of 
various properties and their derivatives, which 
are strong functions of temperature, super- 
position of solutions is not valid. The results 
presented here are for the two separate cases. 
The two cases were solved in temperature 
regions where the degree of dissociation changed 
considerably between the wall and the free 
stream. This selection was done in order to 
determine the extent to which the dissociation 
chemical reaction affects the temperature pro- 
files and the associated heat-transfer rate. The 
temperature regions were also selected so as not 
to be so great that the effects of the undissocia- 
tion regions at both ends of the dissociation range 
dominated the effects of the dissociation reaction. 
It is believed that since the heat-transfer cases 
which were solved existed at the same tem- 
perature levels as the adiabatic wall cases, the 
use of the heat-transfer coefficient which was 
thus obtained with the appropriate adiabatic 
wall temperature should be sufficient for many 
engineering purposes. 

In light of the complexities of the functions 
describing the properties, which are in essence 
the variable coefficients in the boundary-layer 
ordinary differential equations, and of the 
nature in which the two differential equations 
are coupled, it was decided that it was impossible 
to obtain a closed form analytical solution. 
Hence the solutions to the differential equations 
were obtained by numerical integration on the 
I.B.M. 709 high speed digital computer at the 
MIT Computation Center. There are sufficient 
boundary conditions, three for the third order 
momentum equation and two for the second 
order energy equation. Since some conditions 
are known at the wall end, and others are known 
at the free stream end, a direct integration from 
the wall to the free stream is not possible. 

The method used was an iterative one. Guesses 
were made concerning the unknown boundary 
conditions at one end (the wall) and an integra- 
tion was performed, terminating at the free 
stream. In general, the integration generated 



free stream boundary conditions which did not 
match those specified. The two trial estimates 
of the unknown wall boundary conditions were 
then individually perturbed, and the differential 
equations integrated again. Comparisons were 
made with the specified free stream boundary 
conditions. This procedure produced influence 
coefficients evaluating the effects of the pertur- 
bations of the wall boundary conditions on the 
generated free stream conditions. The correct 
wall boundary conditions were obtained by 
inversion of the matrix of the influence co- 
efficients, producing the specified free stream 
boundary conditions. Since the differential 
equations are non-linear, and because only 
linear influence equations were obtained, several 
iterations were necessary in order to arrive at the 
correct wall boundary conditions. 

of the property in the gas at equilibrium is 
used, and one set in which these individual 
properties have been calculated for a non- 
reactive mixture of the monatomic and diatomic 
species at a composition corresponding to 
equilibrium. These properties calculated for 
states of chemical equilibrium have the sub- 
script e. while those properties calculated 
for the frozen, non-reactive, mixture have the 
subscript j: Since the thermal conductivity and 
the specific heat do not enter into the Schmidt 
number, there is only one curve. The Schmidt 
number, and the Prandtl and Lewis numbers. 
based on a non-reactive mixture merely reflect 
that the gas changes from the monatomic to the 
diatomic species. 

PROPERTIES OF IODINE GAS 

Figs. 1-5 show the properties of iodine gas in 

The equilibrium Prandtl number starts out at 
600°K at a value of 0.76, dips down to a value of 
0.55 at lOOO”K, then climbs to a value of 0.95 at 
1450”K, and finally settles down to a value of 
0.67 at high temperature. These deviations from 
a constant value are attributed to the fact that in 
the reaction zone both the thermal conductivity 
and the specific heat are abnormally large: 
however, the thermal conductivity becomes large 
and returns to its normal value sooner than the 
specific heat does. These individual properties 

The equilibrigm Lewis number goes towards 

local chemical equilibrium. Calculations were 
made for the temperature range of 600- 
2400”K, at temperature increments of 25°K. 
Fig. 1 shows the equilibrium constant Kp, which 
has the dimension of atmospheres. In the tem- 
perature range from 800-2400°K the equili- 
brium constant goes from 10m4+ to 102.25 atm, 

are shown in Fig. 3. 

indicating that the equilibrium gas mixture 
changes from the diatomic to the monatomic 
species quite rapidly. The curvature is due to the 
changing enthalpy difference between the two 
species. In the neighborhood of 1500°K the k?- * 
equilibrium constant changes by a factor of 10 0 

for a temperature change of 260°K. - 4 EC 
-I 

Fig. 2 shows the mass and mole fractions 

31 1 

dissociated at various pressure levels. Dis- 
sociation occurs for a much smaller temperature 
change at the lower pressures than at the higher 
pressures. 

Fig, 3 shows the Prandtl, Schmidt and Lewis? 
numbers for iodine gas at 0.1 atm. Two Prandtl 
and two Lewis numbers are shown, one set 
corresponding to values of the specific heat and 
thermal conductivity in which the actual value 

G -4 V 
f The Lewis number used here is Le := pcaD/k which 

is that used by Eckert [2], Lees [3], and Fay and Riddell 
191. The inverse form of the definition k/pc,D, also . . . 
appears m tne nterature. FIG. 1. The equilibrium constant of iodine gas. 
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800 1200 1600 2000 2400 

TEMPERATURE, OK 

432 STEVEN IRWIN FREEDMAN and JOSEPH KAYE 



COMPRESSIBLE LAMINAR BOUNDARY LAYER OF A DfSSUCIATING GAS 433 

FCG. 2. The temperature variation of the 
fraction of iodine which is dissociated in 
a gas in equilibrium, for various pressures. 

1 * 8 f ’ 11 ’ 31 
600 1200 1600 2000 2460 i.2 

k200 I600 2000 2400 
TEMPERATURE. * K 

FK% 3. Prandtl, Schmidt and Lewis numbers of iodine in dissociative equilibrium. 
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unity very rapidly, and returns to the non- 
reactive value very slowly. This tendency of the 
Lewis number to go to unity in the reaction zone 
is because the incremental portion of the peaks 
of the specific heat and thermal conductivity 
due to dissociation and recombination are 
precisely in the ratio of pDc, : k. 

Fig. 4 shows the specific heat, thermal con- 
ductivity, viscosity, diffusion coefficient and 
density ratios over the temperature range from 
600-2400 “K and 0.1 atm. All the curves have 
been normalized with respect to their values 
at lOOO”K, which are tabulated in the figure. 
The viscosity and diffusion coefficient ratios are 
smooth curves. The density ratio shows the 
effect of dissociation. The non-reactive specific 
heat and thermal conductivity are also smooth 
curves. The equilibrium values of these proper- 
ties show a large hump due to the presence of 
the large energy storage in the chemical bond. 

Fig. 5 shows the enthalpy of the gas in 
equilibrium at various pressures. It is again seen 
that the change from diatomic to monatomic 
species occurs more rapidly at low pressures 
than at high pressures. 

where T is the derivative of the dimensionless 
temperature taken with respect to 7. The 77 

Table 1. Values of the wall boundary conditions 

Heat transfer case 

h Tm TW T,’ fw” 

0 1500 750 0.930 0.920 
-0.1 1500 750 0.866 0.834 
-0.2 1500 750 0.797 0.752 

0 2000 1000 0.1688 0.902 
-0.1 2000 loo0 0.1615 0.840 
-0.2 2000 loo0 0.1435 0.735 

0 600 1200 1600 2000 2400 Adiabatic wall case 

TEMPERATURE, ‘K 

FIG. 5. Enthalpy-temperature diagram for iodine in 
equilibrium at various pressures. 

HEAT-TRANSFER RESULTS 

This section will describe the results for heat- 
transfer cases when the wall and free stream 
temperatures are specified as in Table 1. The 

heat transfer to the wall is: 

(19) 

Obtaining the y derivative from the 7 derivative 
one evaluates the heat flux 

qu,= --~~-JJ(~)~=,. (20) 

The numerical result of the computations for 
the heat-transfer case is the temperature gradient 
at the wall. Two solutions were obtained. One 
solution was with a free stream temperature of 
15OO”K, and the other was with a free stream 
temperature of 2000°K. In both cases, the 
wall temperature was one-half the free stream 
temperature; i.e. 750°K and 1000°K. The tem- 
perature gradients at the wall, for the solutions 
without mass transfer, are: 

solution I, T, = 15OO”K, 
Tw = 750”K, T;, = 0.930 

solution II, T, = 2OOO”K, 
T,.” = lOOO”K, T; = 0.1688 

fw Tm Tm o TAW fw” rT 

0 1000 1274 1234 1.515 0*855 
-0.1 1000 1274 1231 1.337 0.847 
-0.2 1000 1274 1229 1.165 0.836 

0 3000 2877 1.315 0.877 
-0.1 ;z 3000 2856 1.173 0.856 
-0.2 2ooo 3fNlO 2835 1.026 0.835 
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derivative is related to the actual gradient at the 
wall by the equation : 

k,,? and &,. are: 

solution I, 

~7, = 3-762, kt,, :-= 0.23624 IO -* .- 
cal 

cm s degK’ 

solution 1 I, 
p = 0. I atm 

p,,: _; 3.653, k,, = l-3173 .’ IO-4 - -?- 
cm s degK’ 

/7 = 0.1 atm. 

Fig. 6 shows the mass flux, mass fraction of 
monatomic species, temperature and heat flux 
profiles for solutions I and Il. The mass flux is 
almost a linear function of y from the wall to the 

13 
k 

_ 0.6 
SOLUTION I B II 

5 

ii! 

g 0.4 

I” 

gap- ’ J 
0 I 2 3 4 5 

BOUNDARY LAYER CO-ORDINATE, 7 

SOLUTION I 

SOLUTION II --.---- 

edge of the boundary Layer. The mass fraction of 
the monatomic species merely reflects the 
temperature profile, since the temperature 
fixes the concentration of the monatomic species. 

The temperature and heat flux profiles shown 
in Fig. 6 are different from the profiles found in 
studies of boundary layers without chemical 
reaction. These anomahes are the result of the 
chemical reaction. In our case, in which a 
chemical reaction occurs in the boundary layer, 
the heat flux must supply the energy necessary 
to dissociate the gas in addition to supplying the 
energy which is transported to the wall. Therefore 
the heat flux must be largest in the vicinity of the 
reaction zone. Fig. 6 shows this maximum. 
Since the thermal conductivity is abnormally 
large in the reaction zone, the small temperature 
gradient in the central portion of the boundary 
layer, where the reaction is occurring, is to be 
expected. In the results for solution I 
(TK ~= 1500°K. T,,. == 750”K), it is noted that the 

5OUNDARY LAYER CO-ORDINATE, Q 

FIG. 6. Boundary-layer profiles of mass flux, mass fraction of monatomic species, temperature 
and heat flux, for the heat-transfer case. 
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gas is almost entirely undissociated near the 
wall, so that the thermal conductivity has a small 
value near the wall, and the temperature gradient 
is correspondingly high. However, in solution II 
(7’, = 2000”K, Tw = lOOO”K), the wall is in the 
reaction zone, hence a high thermal conductivity 
and a small temperature gradient are found. 
These unusual temperature and heat flux profiles 
are one of the important results found during 
the course of this investigation. 

ADIABATIC WALL RESULTS 

This section describes the results obtained for 
the case of zero temperature gradient at the wall 
in the presence of dissipation. The problem is 
sometimes also referred to as the recovery 
factor case or the thermometer problem. It is the 
particular solution to the boundary-layer energy 
differential equation which includes the non- 
homogeneous dimensionless dissipation term 

When the specific heat is constant the factor 
U2/2cP,Tm is M&, - 1)/2, and is the difference 
between the dimensionless free stream stagnation 
temperature and the dimensionless free stream 
static temperature. In the case of variable 
specific heat the actual dissipation term, (22), is 
used. 

During the process of integrating the ordinary 
differential equations the term U2/2cp,Tm 
appears only parametrically. In all the solutions 
which were calculated this parameter had the 
value of O-5. 

The stagnation enthalpy is given as: 

therefore 

(23) 

(24) 

R(v) was calculated, where 

R(O), however, is not the recovery factor. The 
recovery factor, r, is 

TAW - 7-m 
rT = __._.~_~__. 

T Tm mo - 
(26) 

The stagnation temperature can be calculated 
since the stagnation enthalpy is determined by 
fixing the velocity parameter and the free stream 
temperature. 

The local dimensionless temperature ratio 

(27) 

can now be calculated. 
The enthalpy recovery factor can also be 

calculated : 

ih - i, 
ri = .--,. 

la, 0 - lm 
P-9 

The local dimensionless enthalpy ratio 

(29) 

can also be obtained by use of the enthalpy- 
temperature relationships. 

Two solutions were calculated for the adiabatic 
wall case. These solutions are for the following 
physical cases : 

solution IIT, 

T, = 1000”K,2c~~T = 0.5, p = 0.1 atm 
PC0 00 

corresponding to a total temperature of 1274°K : 

solution IV, 

T, = 2OOO”K, 2cI/zT- = 0.5, p = 0.1 atm 
Paz * 

corresponding to a total temperature of 3000°K. 
Fig. 7 shows the temperature difference ratio, 

total temperature, mass flux, mass fraction of 
monatomic species, enthalpy difference ratio, 
total enthalpy, temperature, and heat flux, 
for solutions III and IV. The mass flux profile 
shows an almost linear form near the wall, and 
blends into the free stream smoothly. The 
temperature, temperature difference ratio, and 
enthalpy difference ratio are also smooth 
curves, unlike the temperature profiles in the 
heat-transfer case. The temperature and en- 
thalpy functions have smooth profiles in the 
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2.2 
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I.6 

lb6 

I.4 

I.2 

I.0 

0.8 

0.6 

0.4 

0.2 

0 

BOUNDARY LAYER CO-ORDINATE, 7 

SOLUTION III __I 
uJo : 7.49 1 I04 cm/r 

SOLUTION IV ------ 
u, - 8.09 I I04 Cm/b 

---_______--- 

O I 2 3 4 5 

A. 

0 I 7 3 4 5 

BOUNDARY LAYER CO-ORDINATE, 7 

FIG. 7. Boundary layer profiles of temperature difference ratio, stagnation temperature, mass flux, mass fraction 
dissociated, enthalpy ratio, stagnation enthalpy, temperature and heat flux, for the adiabatic wall case. 
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adiabatic wall case because there is no net 
energy transport in such a boundary layer, only 
a conversion of kinetic into internal energy 
with a slight redistribution. A heat flux is only 
present in the central portion of the boundary 
layer which accounts for the redistribution of 
the energy. The dissipation is the source of 
energy transported by the heat flux. The heat 
flux is zero on both sides of the boundary layer 
because of the external, physical boundary 
conditions. 

The temperature recovery factor found for 
solution III is O-812. The enthalpy recovery 
factor in this case is 0.805. The free stream kinetic 
energy and the specific heat are very large, 
resulting in a small rise in the total temperature. 
Most of the free stream kinetic energy is used to 
increase the amount of gas dissociated. 

The recovery factor found for solution IV is 
O-877. In as much as the free stream is almost 
completely dissociated, there is no appreciable 
difference between the enthalpy definition and 
the temperature definition. 

The effect of the chemical reaction is to 
increase both the specific heat and the thermal 
conductivity. There is a large thermal con- 
ductivity wherever there is a large specific heat. 
Since the Prandtl number does not vary more 
than 12 per cent from its free stream value of 
0.67, we should expect the recovery factor 
(based on the temperature difference ratio) to be 
about 0.8. The temperature recovery factor is 
reasonably close to 0.8 in solutions III and IV. 
The variations are attributed to the unusual 
variations of the properties throughout the 
boundary layer. 

EFFECT OF MASS TRANSFER 

The effect of mass transfer on the heat-transfer 
coefficient can be given by the ratio of the heat- 
transfer coefficient with mass transfer to the 
heat-transfer coefficient without mass transfer. 
Heat-transfer coefficients were calculated for the 
same conditions as presented in the section on 
Heat-transfer results, except that there was a 
mass flux at the wall. This mass flux is: 

(p&o = - -fk--~ 
WUb,) 

Solutions were calculated for values of fw of 
0, -0.1, and -0.2. 

&cause the heat flux at the wall is 

to 
(31) 

where the thermal conductivity is a function of 
temperature, the ratios of the heat-transfer 
coefficients are the ratios of the temperature 
gradients at the wall, for fixed T, and Tw. These 
ratios of the heat-transfer coefficients are shown 
in Fig. 8. It is noticed that mass transfer has a 
bigger effect for the situation when Tw = 750 
and Tm = 1500 than when Tw = 1000 and 
Tm = 2000. In the latter case the wall is hot 
enough for an appreciable amount of dis- 
sociation to be found at the wall. In a dissociation 
reaction two moles of the monatomic species 
are obtained for each mole of undissociating 
diatomic gas. The dissociation reaction results 
in a large decrease in density of the gas, thereby 
thickening the boundary layer. Thus a dis- 
sociating gas produces a “blocking effect” by 
thickening the boundary layer. When the wall 
is at a temperature, lOOO-1500”K, there is a 
large concentration of the monatomic species 
near the wall, so that the portion of the boundary 
layer near the wall has already been thickened. 
This results in a smaller effect due to the add- 
tional thickening of the boundary layer by 
means of mass transfer when the gas at the wall 
is dissociated than when the gas at the wall is 

I.0 

0.9 - Tw = 750 

0.8 - 

0 -0.1 -0.1 -02 

WALL STREAM FUNCTION, fw 

fw = -2 (pbv~~) 

FIG. 8. Effect of mass transfer on the heat-transfer 
coefficient. 
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undissociated. When T,,, is 1000°K and 
.f;,) --- ~-0.2, only a 3 per cent decrease in the 
heat-transfer coefficient is found, while when 
r,,. is 750°K and fU, -: -0.2, a 15 per cent 
decrease is found. 

Reductions in the recovery factor are shown in 
Fig. 9. It is seen that the recovery factor, like 
the heat-transfer coefficient, decreases with 
injection. The percentage decrease in the 

Uco i CVO9 x IO4 cm/s 

0.9 - 

0.8 I 
0 -01 -0.2 

WALL STREAM FUNCTION, Iw 

fw:-2~pvllv~,) 

FIG. 9. Effect of mass transfer on the recovery 
factor. 

recovery factor in the situation where dissocia- 
tion is occurring at the wall is less than when 
there is no dissociation occurring at the wall. 
The value of the recovery factor itself is smaller 
when the wall is in the reaction zone. These two 
numerical results and the numerical results for 
the heat-transfes case are understandable in 
terms of the effect of the increase in specific 
volume of the gas accompanying dissociation. 

The 

FRICTION FACTOR 

shear stress on the surface of the plate is: 

The friction factor is defined as: 

The velocity is given by: 

pu =,f ‘12. 

They derivatives are related to 7 derivatives as 

(35) 

Combining terms to get the friction factor, 
one obtains : 

p’ can be related to T:, by use of the equations 
of state. .[,l’ is included in the tabulated results 
given in Table 1. 

CONCLUSIONS 

In this section the exact value of the heat- 
transfer coefficient as obtained with the aid of 
the digital computer is compared with the value 
obtained by use of previously available approxi- 
mate techniques. The best general technique 
available today is that of using the enthalpy 
difference as the driving potential, and evaluating 
the properties appearing in the dimensionless 
numbers at a reference enthalpy level [2] 

q2Q _ ki( i&> ..- i,V). (37) 

In this technique one uses the value of the 
specific heat calculated for the fictitious condi- 
tion in which the composition of the gas cor- 
responds to that of local chemical equilibrium, 
but in which the gas is considered to be a 
non-reactive mixture of its constituents, in 
evaluating the Nusselt number. The properties 
calculated for this frozen state are denoted by the 
subscript .fi Properties calculated for the actual 
reactive mixture either have no subscript, or 
where a distinction is necessary, a subscript e is 
used. 

This recommended form of the Nusselt 
number based on the enthalpy difference as the 
driving potential is : 

The asterisk indicates that the properties are to 
be evaluated at a reference enthalpy state: 

i* ~~ i, + 0.5( iv. i,) 4. 0.22(i..l,,. ir). (39) 

An alternative form of the Nusselt number is 
based on the temperature difference as the 
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driving potential : 

hTX 
NuT* 3 - 

k,* * 

It is desired that a method be found such that 
the Nusselt number is a unique function of the 
Reynolds number, Prandtl number, Lewis 
number and flow geometry, in order to have a 
simple method of predicting heat-transfer 
rates. Eckert suggests [2] that the equation (41) 
of Fay and Riddell [9] be evaluated at the 
reference enthalpy, and 

Nug* = 0.332(Pr*)1’3 

$@&*) [1 - (Lef*o’52 - l#] (41) 

be used for the prediction of heat-transfer rates 
for a boundary layer flow when the gas is in 
local chemical equilibrium, the properties being 
variable. Such is the case under study. Using 
Eckert’s preferred method, Nug*/d(Re$*) was 
calculated from the exact solution from the 
computer and was compared with 0.332(Pr*)l/“. 
NuT*/d/(ReZ*), Nu~*/2/(Rez,) and NUT*/ 
~(RG,) were also calculated. The Nusselt 
numbers were obtained from the exact solution 
by use of the following equations: 

v* 

2/(Rez*) k,*2AT 2/(-l* vco (43) 

Since Lef* was 0.94 and 0.91 in the situations 
examined, the effect of the term 

[l - (Lef”‘52 - 1) Ai/&] 

was only 2-3 per cent. 
Table 2 shows the comparisons of the various 

dimensionless numbers. 

The enthalpy potential-reference method 
predicts a Nusselt number which is 14 per cent 
higher in one instance and 7 per cent lower in the 
other instance. The other method, the tempera- 
ture potential method, predicts Nusselt numbers 
that are consistently low in comparison with our 
exact calculation. However, the temperature 
driving potential method, when used with the 
thermal conductivity calculated at the enthalpy 
reference condition, but using free stream 
property values in the Reynolds number, 
produces Nusselt numbers which agree to within 
5 per cent with the variable property, but no 
chemical reaction case. The extent to which this 
is fortuitous remains uncertain until a sufficient 
number of solutions have been examined. 

The best estimate of the recovery factor for 
laminar flow over a flat plate is that the recovery 
factor equals the square root of the Prandtl 
number : 

r = dPr. (4) 

The solutions obtained by having the digital 
computer locate the wall temperature at which 
the temperature gradient at the wall is zero gave 
the values shown in Table 3. 

The computed results are in excellent agree- 
ment with the square root of the Prandtl number 
rule. There is only a small, 5 per cent, difference 
between the temperature recovery factor and the 
enthalpy recovery factor. 

EFFECTS OF MASS TRANSFER 

The only studies which have been made of the 
effect of mass transfer on heat transfer have 
been for either non-reactive gases, or for 
simplified property irreversible chemical re- 
action conditions (flames). For these cases 
with the properties dependent on temperature 
and concentration, Eckert [2] recommends that 
the effect of mass transfer on the heat-transfer 

Table 2. Comparison of the dimensionless heat-transfer coefficient 
-. .~_ z--p- 

Tw Tm Nu?ld(I%*l Nu?ld(Rezd NuT*/d(I&*) NUT*fv’(Rezd 0.332(Pr*)1/8 -_-_- 
750 1500 0.336 0.480 0.193 

1000 
0.276 

2000 
0.290 

0.273 0.465 0.171 0.290 0.291 
- - 

2F 
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Table 3. Recovery factors 
..~ 

r, Tee o TA 3,’ w rz \ ‘Pr* 

1000 1274 1234 0.855 0.812 0.835 
2000 3000 2877 0.877 0.877 0.820 

coefficient be calculated using the following 
equation for laminar flow over a flat plate with 
no pressure gradient: 

h _ 
h,=o 

Eckert’s form of the expression, (45), for the 
effect of mass transfer on the heat-transfer 
coefficient is an alternative to the expression of 
Gross, Hartnett, Masson, and Gazley [lo] 

w 
where C* = (pc~)*/(pp)~. (47) 

The expressions for the effect of mass transfer 
on heat transfer, (45) and (46), are empirical 
expressions arrived at by the correlation of many 
exact solutions obtained from analytical and 
numerical solutions to the boundary layer 
differential equations. These expressions may in 
the future become more general by evaluating 
the reference condition at a reference enthalpy 
and composition. 

The results of Eckert’s method are compared 
with the exact values for the present case ob- 
tained by solving the boundary layer energy 
differential equation for various mass-transfer 
rates. The comparisons are given in Table 4. 

Table 4. 

j;, 

-0.1 
-0.2 
--0.1 
-0.2 

Effkct of mass transfer on the heat-transfer 
coefficient 

Actual 
value Predicted values 

T-r. T,,? calculated Sr,* StT* 

1500 750 0.931 0.941 0.899 
1500 750 0.857 0.822 0.797 
2000 1000 0.959 0.936 0.867 
2000 1000 0.853 0.872 0.735 

~ ~._~__. ~~--~~ _._ _.-_~-. .-_ 

It is seen that use of a Stanton number based 
on enthalpy difference as the driving potential 
comes closer to predicting the exact results than 
use of a Stanton number based on temperature 
difference as the driving potential. 

All of the solutions obtained to date show 
little effect of mass transfer on the recovery 
factor for realistic mass-transfer conditions with 
real gases. For the mass-transfer rates studied, 
previous prediction methods indicate that the 
recovery factor would be reduced by about 
1 per cent for fu, -- 0.1 and about 2 per cent 
for J,! -0.2. The results found in the present 
study were of this order of magnitude. For 

.fh 0.2 the recovery factor decreased by 
2.5 per cent. This agreement of a situation in 
which there is a chemical reaction is in excellent 
agreement with the accepted variable property 
non-reactive case. 

Previous numerical solutions to a boundary- 
layer differential energy equation (stagnation 
point) have only been calculated with the variable 
transport properties related by constant Prandtl 
and Lewis numbers [9]. The present calculations 
have included the effect of the actual variations 
in these properties. It is noted in Fig. 4 that in 
the reaction zone the Prandtl number varies 
rapidly, and the Lewis number is very nearly 
unity. An artificial Lewis number in which the 
specific heat and thermal conductivity account 
for only the chemical energy (the difference 
between the actual property and the equilibrium 
composition non-reactive property) is unity. The 
contribution to the thermal conductivity and the 
specific heat attributable to the chemical energy 
available during the reaction is the major portion 
of the property throughout the reaction zone. 
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Resume-Les profils de vitesse, de temperature et de concentration, le facteur thermique par&al et 
le coefficient de transmission de chaleur ont 6tt calcults dans le cas d’un ecoulement supersonique 
de gaz diatomique dissocie (vapeur iodique) sur une plaque plane sans gradient de pression. Les 
resultats ont 6te obtenus pour differents taux de transport de masse. On a utilise les valeurs exactes des 
proprietes thermodynamiques et de transport pour comparer les resultats avec les estimations bas6es 
sur les solutions obtenues dans le cas de proprietts constantes; Y&at pour lequel on &value les 

proprietes est calcule par la methode d’enthalpie de reference. 

Zusannnenfassung-Fiir l%erschallstriimung eines dissoziierenden, zweiatomigen Gases (Joddampf) 
ohne Druckgradient 15ng.s einer ebenen Platte wurden Geschwindigkeits-, Temperatur- und Kon- 
trationsprofil, Riickgewirmfaktor und Warmetibergangskoeffizient berechnet. Ergebnisse liessen sich 
fur verschiedene Durchsatzmengen erhalten. Exakte Werte der thermodynamischen und der Trans- 
portgrossen dienten zum Vergleich mit Schltzungen, die auf Losungen mit konstanten Stoffwerten 
beruhen, wobei der, den Stoffwerten zugrunde gelegte Zustand nach der Bezugsenthalpiemethode 

ermittelt wurde. 

AEHOT~~~B-IT~OBORMTC~~ pacveT npo@i~en CH~POCTR, TeMnepaTypbr I? KoHueHTpauMH H 
KO3@#HuHeHTOB BOCCTaHOBJIeHBR A TennoO6MeBa AJIH CJIyHaH CBepX3ByKOBOrO Te’IeHBH AHC- 
COHHMpybOmerO RByaTOMHOI’O ra3a (napbI HOga) Ha IIJIOCKOti IIjIaCTMHe npH OTCYTCTBMM 
rpaRHeHTa naBneHaH. AaHHbte nonyseHbt Ann pa3nHsHbrx 3HaseHat c~opoc~~ nepeHoca 
MaCCbI. TOHHbIe 3HaYeHHR TepMOJmHaMHHeCKHX CBOtCTB II XapaKTepHCTHK IIepeHOCa MCnOJIb3- 
yloTCH BJIH CpaBHeHHR BTHX HaHHbIX C pe3yJIbTaTaMH, nOJIyHeHHbIMH H3 pemeHHfi YpaBHeHMtt 
C IIOCTORHHIJMH XapaKTepHCTHKaMH. EpH 3TOM paCHeT YpaBHeHHti COCTOHHHFI H TepMOgHHa- 

MWiWKAX CBOikTB IIPOI13BOLQITCR MeTOAOM HCXOHHOt 3HTaJIblIEIEI. 


